
I. INTRODUCTION
The object-oriented database is a generalization of the

relational one and is believed to eliminate many of its flaws
through incorporating modern concepts. One of them is
dynamic object roles with the following characteristics [1]:
a role has its own properties and behavior; an object can
acquire and abandon roles dynamically without changing
its identity; an object can play different roles
simultaneously; an object can play the same role several
times.

The current object-oriented database can express static
properties, e.g., the fact that an employee “is a” person.
However, it is more precise to say that a person “becomes”
an employee for a period of time and later he/she terminates
the employee role. Moreover, a person can be an employee
two or more times.

In general, the concept of dynamic object roles assumes
that an object (a so-called “owner-object” or “owner”) can
be associated with other objects (so-called “role-objects” or
“roles”). Roles are treated as objects with some additional
special features such as: a role cannot exist without its
owner; deleting an owner implies deleting all of its roles;
roles can exist simultaneously and independently. As an
object, a role can have its own additional attributes,
behavior, etc. Moreover, roles can be further specialized as
subroles, sub-subroles, etc, e.g., specialization of an
Employee role can be a Superior role.

Dynamic roles can significantly support conceptual
model and, in comparison to the classical object models, do
not lead to the anomalies and limitations of multiple,
repeating, and multi-aspect inheritance. For instance, two
roles (of the same object) can contain attributes and methods
with the same names without implying any conflict. This is
a fundamental difference in comparison to the concept of
multiple inheritances.

Associations between objects can connect not only
owners with owners, but also owners with roles and roles
with roles. For example, a works-in association can connect
an Employee role with a Company owner-object.

A database with dynamic object roles involves two
kinds of inheritance: static and dynamic. Static inheritance
is the inheritance between classes in the traditional sense,
where the properties of a class are imported by its
subclasses at compile time. The mechanism of dynamic
inheritance is similar with the following difference: it
concerns objects whose values are imported by their roles
at run time.

To a big degree dynamic roles can be an important
paradigm for object-oriented databases and their query
languages constructed e.g. in the spirit of the ODMG
standard [2]. The concept is already present (under another
name and with specific semantics) in the standard SQL3
(abandoned) and its successor SQL1999 [3].

In spite of many proposals, the problem of object-
oriented query languages is still considered open. The ODMG
standard with its OQL (Object Query Language) is criticized
by some specialists due to its inconsistencies, lack of precise
specification, etc. [4]. Therefore in our research on dynamic
object roles we are proposing – the Object-Oriented
Database (OOD) along with its Query Language (OODQL).
In our opinion it does not have the disadvantages of its
competitors. Therefore in this paper we assume at least a
general familiarity with these concepts; the reader is referred
to [5, 6].

In this paper, we have using dynamic object roles into
OOD and also discuss how this concept can be incorporated
into OODQL.

This concept of the object roles has been implemented
in our prototype architecture of the object oriented
database. Currently we are working on a prototype

The dynamic roles of object processing query in real-time object
oriented distributed database architecture

Sajidullah S. Khan* and M.S. Ali**
*Prof. Ram Meghe Institute of Technology & Research, Badnera Amravati, (MS) INDIA

 **Prof. Ram Meghe College of Engineering & Management Badnera Amravati, (MS) INDIA

(Received 5 Dec., 2009, Accepted 15 Jan., 2010)

ABSTRACT : The paper presents the general framework of a distributed object query language for a database
based on an object-oriented with dynamic object roles. A number of questions both for the language and its
database (the so-called object-based approach) are covered, among others, managing a database stack, binding
names, and casting. The paper also considers the issue of query optimization for the language. The discussion is
illustrated with examples and figures.

Keywords : object-orientation, dynamic object roles, distributed databases, object query processing

International Journal on Emerging Technologies 1(1): 75-79(2010) ISSN : 0975-8364et

76 Khan and Ali

architecture of object oriented distributed database where
we intend to implement the ideas presented here.

II. OODQL WITH DYNAMIC OBJECT ROLES
In the discussion we assume that Person objects can

possess Employee and Student roles. Figure 1 presents an
example object store built in accordance with our database
with dynamic roles :

i4 Person

i5 Name “Anand”

i6 Birth Year 1973

i13 Employee

i14 Salary 5000

i15 works-in

i101

i40 PersonClass

i41 Age[byte code]

i1 Person

i2 Name “Rahul”

i3 Birth Year 1975

i50 EmployeeClass

i51 ChangeSalary[byte code]

i52 NetSalary[byte code]

i50 StudentClass

i51 AvgScore[byte code]

i50 Person

i8 Name “Nitin”

i9 BirthYear 1975

i16 Employee

i17 Salary 8000
i18 works-in

i102

i19
Student

i20 Student No 000786
i21 Faculty “Compt”

Fig.1. Example object database storage.

(i) Each store object is constructed of the following
elements: an identifier, a name, and a value (which
can a literal, a link, or a set of objects); e.g., one of
the objects is named Person, its identifier is i1, and
its value is two objects with identifiers i2 and i3.

(ii) There are three objects storing the invariant
properties of Person, Employee, and Student objects;
they are PersonClass, EmployeeClass, and
StudentClass, respectively.

(iii) Each object has access to the invariant properties
of its class. This is denoted as a thick black arrow;
e.g., the Student role is connected to the
StudentClass object.

(iv) Roles dynamically inherit the properties of their
owner-objects. This is denoted as a double-line with
a diamond end; e.g., Employee roles dynamically
inherit from their Person owner.

A. Database stack
In programming languages a special data structure called

a Database Stack is responsible for scope control and
binding names. A new location of volatile objects (called
active record) is pushed onto the database stack when a
procedure is started, and the location is popped when the
procedure is terminated. An active record for a procedure
invocation contains volatile variables (objects) declared
within this procedure, its actual parameters, its return
address, and other data. Binding follows the “search from
the top” rule. The last added location is the first one visited
during the binding, and objects from some locations remain
invisible for the binding (called static scoping).

OOD involves Database Stack – the general idea of the
database stack semantics for object query languages is that
some query operators (non-algebraic) act on Database Stack
in a similar way as invocations of program procedure. For
instance, in the query

Employee where Salary < 5000 and Age > 40 [-->] the
part Salary < 5000 and Age > 40 is a query evaluated in a
new query fired, which is determined by the currently
processed Employee object. Thus, for the evaluation of this
subquery, Database Stack is augmented with a new location
containing information about the internal properties of the
object. After the evaluation this location is popped.

Database Stack consists of locations, which are sets of
binders. A binder is a pair (n, x), where n is an external
name, and x is some value, in particular, a reference to an
object. Such a pair is written as n(x).

In general, binders serve name binding occurring in
queries. For instance, if binder n(x) is on Database Stack
and we want to bind the name n, then the result of the
binding is x. The “search from the top” rule means that
when n is being bound, we are looking for the binder n(x)
that is closest to the stack’s top. To cover bulk data
structures of the store data, we assume that binding is multi-
valued: if the relevant location contains more binders whose
names are n : n(x1), n(x2), n(x3), ..., then all of them form the
result of the binding. In such a case binding n returns the
collection {x1, x2, x3, ...}.

B. Opening new locations on database stack
Consider a query including some name n :
Employee where ... n ... [==>]
In the classical OOD (i.e., without dynamic object roles),

while binding n, Database Stack has the following locations

Khan and Ali 77

going from the top : the internal query fired of the currently
processed object; the environment of its class (binders to
EmployeeClass’s properties); the environment of the
superclass (binders to PersonClass’s properties).

The rules for opening new locations on Database Stack
by a non-algebraic operator for the object oriented database
with roles are a natural modification of the rules for the
object oriented database without roles. The most important
differences for the database with roles are the following :
first, there are new locations for the properties of the roles
(and possibly their owners); second, the database locations
contain binders to root roles.

In the discussion below we consider a query q1 θ q2,
where q is a non-algebraic operator, q1 and q2 are
sub-queries.

(a) The database without roles
Let q1 return the identifier of some object O. Let O be

a member of C1O class, which inherits statically from C2O,
which in turn inherits from C3O, etc. Let O, C1O, C2O,
C3O, ..., have identifiers iO, iC1O, iC2O, iC3O, ..., respectively
(in OOD, classes, methods, etc, are objects too). Then q
pushes onto the top of Database Stack the corresponding
locations in the order shown in Fig.2 (nested is a function
returning binders to the internal properties of the object,
whose identifier is the argument of the function).

Top of Database Stack
nested (i)0

nested (i)C10

nested (i)C20
nested (i)C30
.. . . .
.
.
.

Lo
ca

tio
n

fo
r

th
e

O
oj

b
ec

t

Fig.2. Locations pushed onto Database Stack by a
non-algebraic operator in OOD without roles.

(b) The database with roles
Let q1 return the identifier of an R1 role. Let R1 inherit

dynamically from R2, which in turn inherits dynamically from
R3, etc. Let Ri (i = 1, 2, ...) be a member of C1Ri class,
which inherits statically from C2Ri, which in turn inherits
from C3Ri, etc. The corresponding identifiers are: iR1, iR2,
iR3, ..., iC1R1, iC2R1, iC3R1, ..., iC1R2, etc. In such a case θ
pushes onto the top of Database Stack the corresponding
locations in the order shown in Fig.3.

All the opened locations are removed after processing
the R1 role. Other rules concerning opening and closing
Database Stack locations by a non-algebraic operator remain
unchanged.

For simplicity, Fig.2 and Fig.3 neglect encapsulation that
subdivides properties into public and private. However, the
rule for the object database with roles remains the same as
for the classical model, that is, private properties of an object
of a given class are available only to the methods that are
stored within this class.

Top of Database nested (i)R1

nested (i)C1R1
nested (i)C2R1
.

nested (i)R2

nested (i)C1R2

nested (i)C2R2
.

nested (i)R3

nested (i)C1R3

nested (i)C2R3
.

Location for the
R1 Role

Location for the
R1 Role

Location for the
R1 Role

Fig.3. Locations pushed onto database stack by a
non-algebraic operator in OOD with roles.

Fig.4 presents an example state of Database Stack while
processing Employee roles for the store from Fig.1 in
accordance with the Database Stack manipulation idea shown
in Fig.3.

binding name

Properties of the processed Employee role

Properties of Employee Class

Properties of the Person owner of r

Properties of the Person Class

Global Library procedures environment D
at

ab
a

se
Lo

ca
tio

ns

Global properties of the current location

Root Database Objects Views database

Fig.4. An example for the stack in Fig. 3.

C. Binding
Binding rules for the database with roles are exactly

the same as for the classical model; see Fig.4 for binding
name n in query [==>]. All roles’ names can be bound in a
database location of Database Stack. If the database with
roles is used for programming of applications, then roles’
names can also be bound in the location of the current user
session and in locations containing local environments of
procedures and methods. The rules for auxiliary naming (the
as operator known from OQL) are the same as for the
classical model.

In Fig.5 we present example steps of Database Stack
during evaluation of query [-->] for the object store in Fig.1.
Locations inessential for this example are not shown. The
first Database Stack steps contains only the database
location containing binders for owners and their roles, where
the name Employee is bound (returning {i13, i16}). The
second step presents the situation when where is processing
the object whose identifier is i16. The name Salary is bound
at the top (returning i17) and the name Age is bound in the
PersonClass location, the fourth from the top (returning i41).
During execution of the method, the location of the

78 Khan and Ali

Employee role and the location of EmployeeClass are
invisible due to static scoping. The final step, after executing
the query, is the same as the beginning step.

Person (i)1

Person (i)4

Person (i)7

Student (i)19

Step 1

Employee Salary Age where < 5000 and > 40

works-in (i)18

Change Salary (i)51

NetSalary (i)52

BirthYear (i)9

Name (i)8

Person (i)1

Person (i)4

Person (i)7

Employee (i)13

Employee (i)16

Student (i)19

D
a

ta
ba

se
L

oc
at

io
n

s

Step 2

Fig.5. Steps of database stack during processing queries.

D. Polymorphism and overriding
The discussed above stack-based semantics supports

polymorphism due to the fact that each role and its class
are encapsulated. Thus the designer can use the same name
for different methods stored within different classes.

Overriding is naturally supported by the scoping rules
as well. In particular, it is possible to override a method
defined for a role by a method defined for its sub-role. The
overriding mechanism is extended : it is possible to override
an attribute defined for a role by a method defined for its
sub-role (and vice versa). Such a feature can be useful e.g.
when in a specialized role one wants to replace an attribute
with a virtual attribute.

E. Operators casting
The well-known technique of casting can be applied in

OOD with roles where it enables one to make an explicit
conversion between :

(i) a role and its owner-object,
(ii) different roles of an owner-object,

(iii) an owner-object and one of its roles.
Such a feature is necessary e.g. for the query “get all

employees who are students”. In contrast to the typical
cast operators, our cast operators not only convert types,
but they are also regular operators mapping a collection of
identifiers into another collection of identifiers.

Syntactically, the operator is written as :
(name) query
Where name is the name of an owner-object or a role,

and query returns identifiers of owner-objects or roles. If
query returns owner-objects’ identifiers, then the operator
returns the identifiers of name roles within those objects. If
query returns roles’ identifiers, then the operator returns
the identifiers of their owner-objects (for name objects) or
the identifiers of other roles within the same objects (for
name roles). If an object has no role named name, then the
result is empty (null).

Through the operator we can express, for instance, the
queries below.

Example 1 : “Get employees who are students.”
(Employee) Student
Evaluation of the query Student returns a collection of

the identifiers of Student roles. Then the (Employee) cast
operator converts each of them into the identifier of an
Employee role or into null, if a given object has a Student
role, but has no Employee role. The result is a collection of
the identifiers of Employee roles; nulls are ignored.

Example 2 : “Get persons named Sameer who are
students.”

(Person) (Student where Name = “Sameer”)
Evaluation of the query Student where Name = “Sameer”

returns a collection of the identifiers of Student roles in
those objects for which the value of the Name attribute is
“Sameer” (note that this value can be accessed in Student
roles through dynamic inheritance from their Person owner-
objects). Then the (Person) operator converts each of them
into the identifier of the corresponding Person owner-object.
The result is a collection of those identifiers.

Example 3 : “Suppose that students have a Scholarship
attribute. For each person, get his/her name and income:
the salary for employees, the scholarship for students and
the sum of the salary and scholarship for working students.
For a person, who is neither an employee nor a student, the
income is 0.”

(Person as p) . (p . Name, sum(0, ((Student) p) .
Scholarship, ((Employee) p) . Salary))

In the above example, sum is an aggregate function
similar to the corresponding SQL function.

Similarly we can introduce a Boolean operator testing
presence of a given role within an object. Another operator
can return the names of those roles that are currently present
within an object. Such operators increase the generic
programming ability.

III. OPTIMIZATION OF QUERY
Because the database with dynamic roles is based on

the standard OOD, the general idea of static query
optimization through static analysis, as presented e.g., in
[5, 7, 8], remains generally the same. To cover the concept

Khan and Ali 79

of roles, the database schema graph needs a new kind of
nodes to store definitions of roles and a new kind of edges
for the is_role_of relationship between roles.

Some modifications are needed for the query
optimization techniques. The stack’s sizes calculated in the
method of independent subqueries [5].

In addition, optimization techniques, which have not
been considered so far. For instance, the cast operators
discussed in the previous section can lead to a situation
when an auxiliary name cannot be eliminated but the query
can still be rewritten to a more efficient form. The following
illustrates the idea. Consider the query “get persons born
after 1970 along with their companies” in OODQL with
dynamic roles :

((Person as p) ((Employee) p) . works-in . Company)
where p.BirthYear > 1970

In this query the dependent join operator joins each
Person owner-object (named p in this query) with the
Company object that the person works-in iff the person has
an Employee role, which is determined by the cast operator
(Employee). The resulting pairs <p(iPerson), iCompany> (where
iPerson and iCompany are references to Person and Company
objects, correspondingly) are then filtered by where, which
selects only those pairs, for which the person is born after
1970. According to the optimization rules presented in the
papers referred to above, the selection predicate can be
pushed before the operator:

(((Person as p) where p.BirthYear > 1970)
((Employee) p) . works_in . Company)

but the auxiliary name p cannot be removed, because it
is used after the join in casting. Nevertheless, we can perform
the selection before introducing p:

(((Person where BirthYear > 1970) as p) ((Employee)
p) . works_in . Company)

Such a case can be especially common when the
optimization concerns queries involving views, that is, when
such a selection is applied to a view invocation, which is
then macro-substituted. The example shows an ability to

apply query-rewriting techniques to queries addressing the
object model with roles.

Although optimization techniques for the database need
further development, we do not expect that this object
oriented database implies totally new query optimization
problems.

IV. SUMMARY
In the paper we have presented general assumptions

concerning to the Object Oriented Database with Query
Language, which incorporates the concept of dynamic object
roles. The concept is a powerful object oriented database
that makes it possible to express that e.g. an object during
its lifetime can acquire and lose roles without changing its
identity.

Our further research will continue to develop
Architecture for Real Time Object Oriented Distributed
Database

REFERENCES
[1] F. Steimann, “On the Representation of Roles in Object-

Oriented and Conceptual Modeling”, Data & Knowledge
Engineering, Elsevier Science, 35(1): 83-106(2000).

[2] R.G.G. Cattel, D.K. Barry (Eds.), Object Data Management
Group: The Object Database Standard ODMG, Release 3.0,
Morgan Kaufmann Publishers, (2000).

[3] American National Standards Institute (ANSI) Database
Committee (X3H2), Database Language SQL Part 2:
Foundation (SQL/Foundation), J. Melton (Ed.), Working
Draft, (1999).

[4] S. Alagic, “The ODMG Object Model: Does it Make Sense?”
Proc. of OOPSLA, SIGPLAN Notices, Atlanta, USA,
32(10): 253-270(1997).

[5] J. P³odzieñ, A. Kraken, “Object Query Optimization through
Detecting Independent Subqueries”, Information Systems,
Elsevier Science, 25(8): 467-490(2000).

[6] K. Subieta, Y. Kambayashi, J. Leszczy³owski, “Procedures in
Object-Oriented Query Languages”, Proc. of VLDB, Zurich,
Switzerland, 182-193(1995).

[7] J. P³odzieñ, K. Subieta, “Applying Low-Level Query
Optimization Techniques by Rewriting”, Proc. of DEXA,
Springer LNCS 2113, Munich, Germany, 867-876(2001).

[8] J. P³odzieñ, K. Subieta, “Static Analysis of Queries as a
Tool for Static Optimization”, Proc. of IDEAS, IEEE
Computer Society, Grenoble, France, 117-122(2001).

